

Desarrollo de un metodo analitico indicador de estabilidad y biodisponibilidad en vitro por hplc para microencapsulado de acido acetilsalicilico y cafeina

CHOQUE, CRISTIAN1

CORRESPONDENCIA: CRISTIANDR@LIVE.COM

FECHA DE RECEPCIÓN: 16 DE ABRIL DE 2014

FECHA DE ACEPTACIÓN 30 DE JULIO DE 2014

Resumen

Se desarrollo de un método analítico indicador de estabilidad y biodisponobilidad por HPLC (Cromatografía Liquida de Alta Resolución) para la determinación de Ácido Acetilsalicílico y su producto de degradación el Ácido Salicílico además de la determinación de la cafeína en una forma farmacéutica sólida en este caso un granulado. Para establecer la valides del método analítico se determinaron los parámetros de especificidad, linealidad e intervalo, precisión, exactitud, límite de cuantificación y límite de detección utilizando un Cromatografo Liquido de Alta Resolución HPLC Agilent, una columna cromatografíca con un base de sílice unida químicamente a una cadena hidrocarbonada de 18 átomos de carbono L1 según USP (Farmacopea de los Estados Unidos) una fase móvil compues-

Abstract

Is developing a stability indicator and biodisponobilidad analytical method by HPLC (High Resolution Liquid Chromatography) for the determination of acetylsalicylic acid and its degradation product Salicylic Acid plus the determination of caffeine in a solid dosage form in this case a granules. To establish the validity of the analytical method parameters specificity, linearity and range, precision, accuracy, limit of quantification and limit of detection using a liquid chromatograph Agilent High Resolution HPLC, column chromatography with silica-based chemically bonded were determined a hydrocarbon chain of 18 carbon atoms, L1 according to USP (United States Pharmacopeia) a mobile phase composed of 85% monobasic sodium phosphate adjusted to a concentration of 25

¹ Laboratorio de Control de Calidad de Medicamentos FCFB-UMSA

ta de 85% de Fosfato Monobásico de Sodio a una concentración 25mM ajustado a pH 2,4 y 15% de Acetonitrilo grado HPLC, este método fue utilizado para la cuantificación del Ácido Acetilsalicílico y Cafeína un granulado que contiene manitol, alcohol, colorante FD&C Yellow N°6, sacarina, aroma naranja spray, bicarbonato de sodio, ácido cítrico, copovidona, copolimero del ácido meta acrílico como agente de recubierta entérica. Luego se determinó la Biodisponibilidad in vitro del Ácido Acetilsalicílico micro encapsulado con un agente de recubierta entérica y además de la cafeína en el cual se evidencio que el método analítico tiene la capacidad de cuantificar estos principios activos en una primera etapa sometidos dos horas en fluido gástrico simulado y a partir de ahí una hora en fluido intestinal simulado en el equipo de disolución in vitro Pharma Test

mM at pH 2.4 and 15% HPLC grade acetonitrile, this method was used for the quantification of acetylsalicylic acid and Caffeine granules containing mannitol, alcohol, FD & C Yellow No. 6, saccharin, flavor orange spray, sodium bicarbonate, citric acid, copovidone, copolymer of meta acrylic acid as an agent for enteric coating. Bioavailability vitro micro encapsulated aspirin with enteric coating agent and in addition to caffeine which was evident that the analytical method is the ability to quantify these active ingredients in a first step subjected two hours gastric fluid was then determined simulated and from there an hour in simulated intestinal fluid in vitro dissolution equipment Pharma Test

PALABRAS CLAVE

Validación, Biodisponibilidad, estabilidad, HPLC

KEY WORDS

validation, bioavailability, stability, HPLC

INTRODUCCIÓN

La tematica actual "Validacion de Metodologias Analiticas Indicadoras de Estabilidad y Biodisponibilidad" tiene una importancia fundamental en el area de la produccion y control de calidad de los medicamentos, la USP (Farmacopea de los Estados Unidos) refiere metodos para el analisis de los principios activos que tienen ciertas particularidades que hacen dificultosa su reproduccion en otros paises como en Bolivia, por ello se dessarrollo un metodo Analitico Indicador de Establidida y Biodisponibilidad en el Laboratorio de Control de Calidad de Medicamentos de la Facultad de Ciencias Farmaceuticas y Bioquimicas de la Universidad mayor de San Andres.(USP.2009:1730-31)

ESTABILIDAD DE MEDICAMENTOS

La estabilidad de medicamentos es la extension del tiempo en el que un producto farmaceutico terminado mantiene entre limites especificados las mismas propiedades que tenia en el momento de su manufactura (propiedades fisicas, quimicas, microbiologicas, biofarmaceuticas, fisicoquimicas, terapeuticas y toxicologicas) despues de un proceso de manufactura definido y en un envase primario y secundario.(OMS,Informe 43.2009.anexo 4)

En el caso del Ácido Acetilsalicílico se requiere de un método analítico validado con la capacidad de cuantificar a este principio activo y su producto de degradación el Ácido Salicílico como se muestra en la siguiente imagen: (Connors, K.A.1986. pp:8-12)

Fuente: Connors, K.A.1986. pp:8-12

Los parámetros fundamentales para la Validación de un método Analítico los siguientes:

- Especificidad y Selectividad
- Linealidad e Intervalo de Análisis
- Precisión
- Exactitud
- Límite de Detección y Limite de Cuantificación(Quattrochi, O.A.1992. pp:107-20)

Especificidad

Es la pertinencia del instrumento para detectar un analito. (Quattrochi, O.A.1992.)

Selectividad

Capacidad de un método analítico para identificar y/o cuantificar simultánea o separadamente los analitos de interés de manera inequívoca en presencia de otras sustancias químicas que puedan estar presentes en la muestra. (Quattrochi, O.A.1992.)

Linealidad e intervalo de analisis

Capacidad del Método de proporcionar resultados que son directamente (o por medio de transformaciones matemáticas) proporcionales a la concentración del analito dentro de un intervalo establecido. (Quattrochi, O.A.1992.)

Precisión

Capacidad del método de tener concordancia (menor grado de dispersión) entre una serie de datos de tomas múltiples a partir de una misma muestra(Quattrochi, O.A.1992.)

Exactitud

Capacidad del Método Analítico de expresar la proximidad del valor aceptado convencionalmente como verdadero o un valor de referencia, con el valor experimentalmente encontrado. (Quattrochi, O.A.1992.)

Sensibilidad

Dentro de la sensibilidad se encuentran el Límite de Detección y Límite de Cuantificación que se definen de la siguiente manera: (Quattrochi, O.A.1992.)

Limite de cuantificación

La mínima cantidad de analito en la muestra que se puede cuantificar bajo las condiciones experimentales descritas con una adecuada precisión y exactitud(Quattrochi, O.A.1992.)

Limite de detección

La mínima cantidad del analito en la muestra que se pueda detectar aunque no necesariamente cuantificar bajo las condiciones Experimentales del Método Analítico. (Quattrochi, O.A.1992.)

Objetivo del estudio

Desarrollar un Método Analítico indicador de Estabilidad y Biodisponibilidad para el Ácido Acetilsalicílico por cromatografía liquida de alta resolución (HPLC)

Materiales y métodos

	MATERIALES y REACTIVOS		METODOS
•	Cromatografía de Líquidos de Alta Resolución	•	Disolución de Formas Farmacéuticas Solidas
	Agilent		in vitro
•	Equipo de Disolución in vitro Pharma Test	•	Sonicacion Ultrasonido
•	Filtros de Acetato de Celulosa de un	•	Ultrafiltración
	micronaje de 0,22 µm		
•	Material de vidrio típico de laboratorio		
•	Acetonitrilo HPLC		
•	Fosfato monobásico de sodio P:A.		
•	Cromatografía Liquida de Alta Resolución		
	(HPLC)		

El método analítico esta relacionado con las directrices de "Introducción a la HPLC" el cual da el soporte técnico científico para el desarrollo de métodos analíticos indicadores de estabilidad y biodisponibilidad.

Se utilizaron Ácido Acetilsalicílico, ácido Salicílico y Cafeína Anhidra Estándares de trabajo de referencia obtenidos por normalización interna.

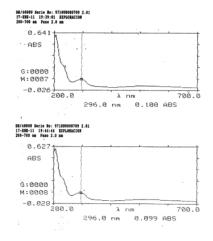
RESULTADOS

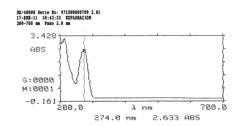
Sistema Cromatografico

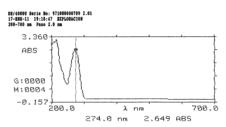
Longitud de Onda: 215nm

Fase Móvil: Mezcla Filtrada por 0.45 micrómetros con la siguiente composición:

- 85% de un solución amortiguadora de Fosfato Monobásico de Sodio (NaH2PO4) a una concentración 25mM ajustado con Ácido Fosfórico a pH=2.4
- 15% de Acetonitrilo (ACN)

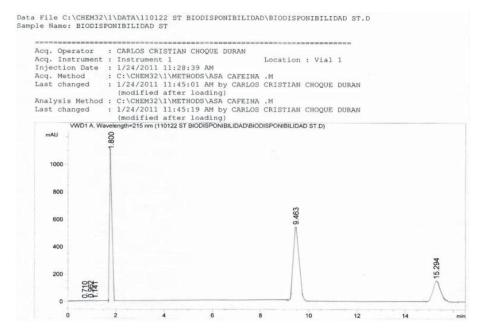

Diluyente: Fase móvil


Fase Estacionaria: Columna Cromatográfica C18 base de Silica unida a una Cadena Hidrocarbonada de 18 átomos de carbono (L1 según USP).


Flujo: 2ml/min

Volumen de Inyección: 20 microlitros(Quattrochi, O.A.1992.)

Imágenes de los espectros de absorcion del acido actetilsalicilico y la cafeina



Fuente: propia, 2001

Imagen del cromatograma de los estandares de acido acetilsalicilico, cafeina y acido salicilico

Fuente: propia, 2001

Tabla que muestra los parametros cromatograficos para establecer la selectividad del método analitico

PARAMETROS CROMATO CRAFICOS	FORMULAS	CAFBNA	ACIDO ACETILSALICILO	ACIDO SALICILOO
RESOLUCION	R=2(t2-t1)/(W1+W2)	51,069	51,069	19,625
CONSTANTEDECAPACIDAD	K=(ti-to)/to	1,535	12,32	20,54
FACTOR DESEPARACION	A=K2/K1	8,02	8,02	1,667
NUMERO DEPLATOSTEORICOS	N=16(t/w)2	12775	25637	29364

Fuente: propia, 2001

El método es SELECTIVO ya que la resolución entre los picos del Ácido Acetilsalicílico la Cafeína y el Ácido Salicílico tienen un valor mayor a 2.

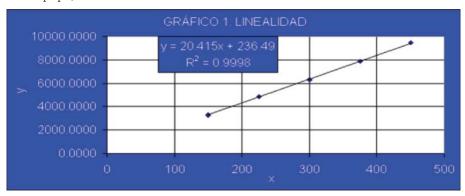

Además el Método Analítico es Indicador de Estabilidad ya que puede Analizar de manera separada al producto de degradación del Ácido Acetilsalicílico.

Tabla que muestra los datos de linealidad

x (ug/mL)	y (Abs.)	X ²	y²	xy		f((y-a)/x)	S ²
150	3279.9100	22500.000	10757809.61	491986.50		20.29	
150	3330.8700	22500.000	11094694.96	499630.50)	20.63	0.029
150	3305.3900	22500.000	10925603.05	495808.50)	20.46	
225	4838.8800	50625.000	23414759.65	1088748.0	0	20.46	
225	4866.9400	50625.000	23687104.96	1095061.5	0	20.58	0.004
225	4852.9100	50625.000	23550735.47	1091904.7	5	20.52	
300	6299.2600	90000.000	39680676.55	1889778.0	0	20.21	
300	6335.5200	90000.000	40138813.67	1900656.00		20.33	0.004
300	6317.3900	90000.000	39909416.41	1895217.00		20.27	
375	7885.1600	140625.000	62175748.23	2956935.00		20.40	
375	7881.8000	140625.000	62122771.24	2955675.00		20.39	0.000
375	7883.4800	140625.000	62149256.91	2956305.00		20.39	
450	9441.1100	202500.000	89134558.03	4248499.50		20.45	
450	9450.3300	202500.000	89308737.11	4252648.50		20.48	0.000
450	9445.7200	202500.000	89221626.32	4250574.00		20.46	
Σx	Σy	∑x²	Σy²	Σχ	n		
4500	95414.67	1518750	677272312.2	32069427.8	15		

Fuente: propia, 2001

Fuente: propia, 2001

a =	236.486	r =	0.999917782	
b =	20.41497333	r ² =	0.999835571	

Fuente: propia, 2001

Tabla del test de hipótesis para la pendiente (b)

$\prod_{i=1}^{n} (0) = \prod_{i=1}^{n} (1) = \prod_{i=1}^{n$
--

S²xy =	889.7067362	Sb =	0.072610855			
t(0.05,n-2) =	2.16037	texp =	281.15594	.15594 Conclusión = Se rechaza H(o)		
Límites de Confianza =			bmáximo =	20.572	bmínimo =	20.258

Fuente: propia, 2001

Tabla del test de hipótesis para la ordenada en el origen (a)

H(0) = a = 0			H(1) =	a ≠ 0		
Sa = 23.10463247						
t(0.05,n-2) = 2.16037 texp =		10.23544	Conclusión =	Se rechaza H(o)		
Límites de Confianza =			amáximo =	286.401	amínimo =	186.571

Fuente: propia, 2001

Tabla del análisis de varianza para la regresión lineal

Sxx =	168750	Sxy =	3445026.75	SCr =	70330129.2
$\Sigma(\Sigma yi)^2 =$	2031809743.4	SCep =	2397.6854	SCec =	70339297.7
SCl =	9168.5	SCE =	11566.2		

Fv	gl	SC	СМ	Fexp	Ft
Regresión	1	70330129.23	70330129.23	79048.6644	4.667
Error	13	11566.1876	889.7067362	CONCLUSION	b≠ 0
Total	14	70341695.4			

Fuente: propia, 2001

INTERPRETACIÓN

Los resultados evidencian que el Método Analítico es LINEAL en el intervalo de concentraciones Establecido.

PRESICIÓN

Experimento

Se trabajó con soluciones estándar en concentraciones de 150, 300 y 450 microgramos por mililitro de Cafeína y se obtuvieron los siguientes resultados.

Tabla que muestra repetibilidad del método

%	X (ug/ml)	Y (Area)	f = Y/X		
50	150	3427.9300	22.85287		
50	150	3041.2600	20.27507		
50	150	3234.5950	21.56397		
100	300	6528.4000	21.76133		
100	300	6549.8600	21.83287		
100	300	6539.1300	21.79710		
150	450	9547.9400	21.21764		
150	450	9518.6600	21.15258		
150	450	9533.3000	21.18511		
Promedio de f =	21.51539				
s =	0.69818				
CV (%) =	3.25				
Conclusión=	Repetibilidad del Método	Aceptable			

Fuente: propia, 2001

CRITERIO DE ACEPTACION

CV Teórico menor a 6.71%

INTEPRETACIÓN

El Coeficiente de Variación obtenido de los factores de respuesta es de 3.25% menor al Coeficiente de variación Teórico que es 6.71% por lo que se concluye que el método es PRECISO.

EXACTITUD

Experimento

Se prepararon soluciones Estándar y Muestra de concentraciones de 50 a 150%(21)

- Principio Activo Puro
- Muestra que contiene al principio Activo

CONCENTRACIONES	50%-100%-150%
GRUPOS	M vs ST

Fuente: propia, 2001

Tabla que muestra los datos de las concentraciones y sus respuestas

x (ug/mL)	ESTANDAR (datos linealidad)					
150	3279.9100	3279.9100 3330.8700				
300	6299.2600	6335.5200	6317.3900			
450	9441.1100	9450.3300	9445.7200			
x (ug/mL)	MUESTRA (datos precisión)					
150	3427.9300	3041.2600	3234.5950			
300	6528.4000	6549.8600	6539.1300			
450	9547.9400	9518.6600	9533.3000			

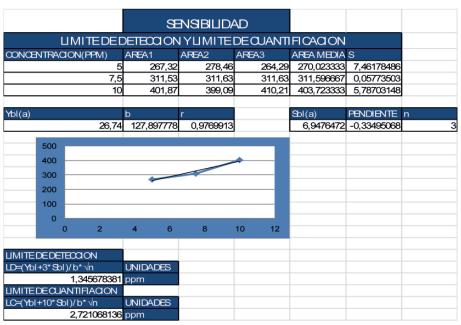
Fuente: propia, 2001

Recuperación media

	Ensayo 1 (%)	Ensayo 2 (%)	Ensayo 3 (%)
Nivel 1	65.3206	57.0658	61.1614
Nivel 2	103.6376	103.3831	103.5100
Nivel 3	126.4144	125.9038	126.1590
Promedio =	96.9506	CV (%) =	29.5381

Fuente: propia, 2001

texp = 0.31


t (95%,n-1) =2.306

INTERPRETACION

El Método Analítico es Exacto ya que el valor de t de Student Experimental es menor que el valor Estadístico de Tablas.

Resultados del Límite de Detección y Limite de Cuantificación (Pérez, J.A. y Forn M.P 2001.pp: 45-94)

Fuente: propia, 2001

Imagen del cromatografo líquido de alta resolución AGILENT 1200

JERINGA FILTRO DE MUESTRA FILTRO Y JERINDA

Fuente: propia, 2001.Laboratorio de Control de Calidad de Medicamentos

Experimento

Para realizar el experimento se recurrió un equipo de Disolución *in Vitro* armado con el Aparato 1 (canastilla)

Canastillas (aparato 1)

Equipo de disolucion Pharma Test

Fuente: propia, 2001.Laboratorio de Control de Calidad de Medicamentos

CONDICIONES DE OPERACIÓN DE LA PRUEBA

MEDIO DE DISOLUCION:

- 750ml de HCl 0.1N en la Etapa Acida
- Añadido de 250ml de Na3PO4 0.2M ajustado a pH 6.8 en la Etapa Amortiguada

TEMPERATURA:

• 37°C en ambas Etapas VELOCIDAD:100rpm

METODO DE ANALISIS

• Cromatografía Líquida de Alta Resolución(HPLC)

ALICUAOTA:

1. 5ml filtrados (OMS .1993.Informe 33. Acapite 2.2)

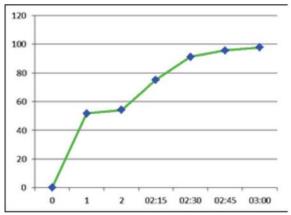


Tabla que muestra los resultados del perfil de disolucion de biodisponibilidad in vitro

TIEMPO DE MUESTREO (h:min)	AREA DEL ESTANDAR	AREA DE LAS MUESTRAS	PDA(%Q)
0	8290,69	0	0
1	8290,69	1439,97	51,75%
2	8290,69	1504,38	54,07%
02:15	8290,69	1565,85	75,16%
02:30	8290,69	1908,41	91,15%
02:45	8290,69	2010,97	95,57%
03:00	8290,69	2066,69	97,71%

Fuente: propia, 2001

Imagen que muestra el perfil obtenido de la biodisponibilidad in vitro

Fuente: propia, 2001

DISCUSIONES

El método analítico por Cromatografia liquida de alta resolución es capaz de detectar y cuantificar al Ácido Acetilsalicílico y su producto de degradación química el ácido Salicílico por lo que es válido y aceptable bajo los parámetros que exige la Farmacopea de Los Estados Unidos (USP)

AGRADECIMIENTOS

Especial agradecimiento a la Dra. María Luisa Daza Docente de la Facultad de Ciencias Farmacéuticas y Bioquímicas.

A la disponibilidad del Laboratorio de Control de Calidad de Medicamentos de la Facultad de Ciencias Farmacéuticas y Bioquímicas

REFERENCIAS

Comité de Expertos en Especificaciones para preparaciones Farmacé OMS (2009).Informe 43. Anexo 4 Farmacéuticas,

Comité de Expertos en Especificaciones para preparaciones Farmacéuticas, OMS (1993).Ensayo de disolución para las formas de dosificación oral sólidas. Informe 33. Acapite 2.2

Connors, K.A. (1986): Chemical Stability of Pharmaceuticals, Nueva York-U.S.A., John Wiley & Sons, pp. 8-12,

Convención de la farmacopea de los Estados Unidos de América (2009): Farmacopea de los Estados Unidos USP-32. Rockville-Estados Unidos, United Book Press, pp. 1730-31.

Pérez, J. y Forn M. (2001). Asociación Espa-ñola de Farmacéuticos de la Industria (AEFI) Validación de Métodos Analíticos:

Validación de Especialidades Farmacéuticas. Barcelona-España, pp. 45-94
Quattrochi, O. (1992) Introducción a la
HPLC: Cromatografía en Fase Reversa. Buenos-Aires Argentina. Artes Gráficas Farro SA, pp.107-20 PRORAMAS INFORMATICOS

Microsoft Excel (2010)